42 research outputs found

    GraphStep: A System Architecture for Sparse-Graph Algorithms

    Get PDF
    Many important applications are organized around long-lived, irregular sparse graphs (e.g., data and knowledge bases, CAD optimization, numerical problems, simulations). The graph structures are large, and the applications need regular access to a large, data-dependent portion of the graph for each operation (e.g., the algorithm may need to walk the graph, visiting all nodes, or propagate changes through many nodes in the graph). On conventional microprocessors, the graph structures exceed on-chip cache capacities, making main-memory bandwidth and latency the key performance limiters. To avoid this “memory wall,” we introduce a concurrent system architecture for sparse graph algorithms that places graph nodes in small distributed memories paired with specialized graph processing nodes interconnected by a lightweight network. This gives us a scalable way to map these applications so that they can exploit the high-bandwidth and low-latency capabilities of embedded memories (e.g., FPGA Block RAMs). On typical spreading activation queries on the ConceptNet Knowledge Base, a sample application, this translates into an order of magnitude speedup per FPGA compared to a state-of-the-art Pentium processor

    Family History and Breast Cancer Hormone Receptor Status in a Spanish Cohort

    Get PDF
    Breast cancer is a heterogenous disease that impacts racial/ethnic groups differently. Differences in genetic composition, lifestyles, reproductive factors, or environmental exposures may contribute to the differential presentation of breast cancer among Hispanic women.A population-based study was conducted in the city of Santiago de Compostela, Spain. A total of 645 women diagnosed with operable invasive breast cancer between 1992 and 2005 participated in the study. Data on demographics, breast cancer risk factors, and clinico-pathological characteristics of the tumors were collected. Hormone receptor negative tumors were compared with hormone receptor postive tumors on their clinico-pathological characteristics as well as risk factor profiles.Among the 645 breast cancer patients, 78% were estrogen receptor-positive (ER+) or progesterone receptor-positive (PR+), and 22% were ER−&PR−. Women with a family history of breast cancer were more likely to have ER−&PR− tumors than women without a family history (Odds ratio, 1.43; 95% confidence interval, 0.91–2.26). This association was limited to cancers diagnosed before age 50 (Odds ratio, 2.79; 95% confidence interval, 1.34–5.81).An increased proportion of ER−&PR− breast cancer was observed among younger Spanish women with a family history of the disease

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    Automatic Analysis of Firewall and Network Intrusion Detection System Configurations

    No full text
    This research is sponsored by DARPA under contract number N66001-00-C-8058. The views herein are those of the authors and do not necessarily reflect the views of the supporting agency. DISTRIBUTION STATEMENT “A”: Approved for public release; distribution is unlimited. Given a network that deploys multiple firewalls and network intrusion detection systems (NIDSs), ensuring that these security components are correctly configured is a challenging problem. Although models have been developed to reason independently about the effectiveness of firewalls and NIDSs, there is no common framework to analyze their interaction. This paper presents an integrated, constraint-based approach for modeling and reasoning about these configurations. Our approach considers the dependencies among the two types of components, and can reason automatically about their combined behavior. We have developed a tool for the specification and verification of networks that include multiple firewalls and NIDSs, based on this approach. This tool can also be used to automatically generate NIDS configuration

    Generating finite-state abstractions of reactive systems using decision procedures

    No full text
    Abstract. We present an algorithm that uses decision procedures to generate finite-state abstractions of possibly infinite-state systems. The algorithm compositionally abstracts the transitions of the system, relative to a given, fixed set of assertions. Thus, the number of validity checks is proportional to the size of the system description, rather than the size of the abstract state-space. The generated abstractions are weakly preserving for ∀CTL * temporal properties. We describe several applications of the algorithm, implemented using the decision procedures of the Stanford Temporal Prover (STeP).

    Ordered Binary Decision Diagrams and the Davis-Putnam Procedure

    No full text
    We compare two prominent decision procedures for propositional logic: Ordered Binary Decision Diagrams (obdds) and the Davis-Putnam procedure. Experimental results indicate that the Davis-Putnam procedure outperforms obdds in hard constraint-satisfaction problems, while obdds are clearly superior for Boolean functional equivalence problems from the circuit domain, and, in general, problems that require the schematization of a large number of solutions that share a common structure. The two methods illustrate the different and often complementary strengths of constraint-oriented and search-oriented procedures

    Differential BDDs

    No full text
    We present a class of Ordered Binary Decision Diagrams, Differential bdds (\Deltabdds), and transformations Push-up (") and Delta (ffi) over them. In addition to the ordinary node-sharing in normal bdds, isomorphic substructures can be collapsed further in \Deltabdds and their derived classes, forming a more compact representation of boolean functions. The elimination of isomorphic substructures coincides with the repetitive occurrences of small components in many applications of bdds. The reduction is potentially exponential in the number of nodes and proportional to the number of variables, while operations on \Deltabdds remain efficient
    corecore